Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/01)

GCE

June 2008 6663 Core Mathematics C1 Mark Scheme

Scheme	Marks	
$2x + \frac{5}{3}x^3 + c$	M1A1A1	
		(3) 3
M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct terms	rm.	
$1^{\text{st}} \text{ A1 for } \frac{5}{3}x^3 \text{ or } 2x + c \text{ . Accept } 1\frac{2}{3} \text{ for } \frac{5}{3} \text{ . Do } \underline{\text{not}} \text{ accept } \frac{2x}{1} \text{ or } 2x^1 \text{ as final}$	answer	
2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or $1.\dot{6}$ for $\frac{5}{3}$ but not	1.6 or 1.67 etc	
Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.0	67, the 1.67 is	
treated as ISW		
NB M1A0A1 is not possible		
	$2x + \frac{5}{3}x^3 + c$ M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct te 1^{st} A1 for $\frac{5}{3}x^3$ or $2x + c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final 2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or $1.\dot{6}$ for $\frac{5}{3}$ but not Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1. treated as ISW	$2x + \frac{5}{3}x^3 + c$ M1A1A1 M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct term. $1^{st} \text{ A1 for } \frac{5}{3}x^3 \text{ or } 2x + c \text{ Accept } 1\frac{2}{3} \text{ for } \frac{5}{3} \text{ . Do } \underline{\text{not}} \text{ accept } \frac{2x}{1} \text{ or } 2x^1 \text{ as final answer}$ $2^{nd} \text{ A1 for as printed (no extra or omitted terms). Accept } 1\frac{2}{3} \text{ or } 1.6 \text{ for } \frac{5}{3} \text{ but not } 1.6 \text{ or } 1.67 \text{ etc}$ Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67, the 1.67 is treated as ISW

Question number		Scheme	Marks	
2.	$x(x^2 - 9)$ $x(x - 3)(x - 3)$		B1 M1A1	(3)
	M1 fo "E Th	r first factor taken out correctly as indicated in line 1 above. So $x(x^2+9)$ r attempting to factorise a relevant quadratic. Ends" correct so e.g. $(x^2-9)=(x\pm p)(x\pm q)$ where $pq=9$ is OK. his mark can be scored for $(x^2-9)=(x+3)(x-3)$ seen anywhere. If a fully correct expression with all 3 factors. Fatch out for $-x(3-x)(x+3)$ which scores A1 freat any working to solve the equation x^3-9x as ISW.) is B0	

Question number	Scheme	Marks	
3	(a) 10 (7, 3) (b)	B1B1B1 (3)	
	(3.5, 0)	5	
(a)	Allow "stopping at" (0, 10) or (0, 7) instead of "cutting" 1 st B1 for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching <i>x</i> -axis but cutting positive <i>y</i> -axis. Ignore any values on axes. 2 nd B1 for curve cutting <i>y</i> -axis at (0, 10). Point 10(or even (10, 0) marked on positive <i>y</i> -axis is OK) 3 rd B1 for minimum indicated at (7, 3). Must have both coordinates and in the right order.		
	If the curve flattens turning point like the once at first offence (a) or in (b) but not this would score B0B1B0	nis penalise e ie 1 st B1 in	
	The U shape mark can be awarded if the sides are fairly straight as long as the v		
(b)	1 st B1 for U shaped curve, touching positive x-axis and crossing y-axis at (0, 7)[comarked on positive y axis] or 7 marked on y-axis		
	2^{nd} B1 for minimum at (3.5, 0) or 3.5 or $\frac{7}{2}$ marked on x-axis. Do <u>not</u> condone (0, 3)	3.5) here.	
	Redrawing $f(x)$ will score B1B0 in part (b).		
	Points on sketch override points given in text/table. If coordinates are given elsewhere (text or table) marks can be awarded if t compatible with the sketch.	hey are	

S

Question number	Scheme	Marks	
4. (a)	$[f'(x) =] 3 + 3x^2$	M1A1	(2)
(b)	$3+3x^2=15$ and start to try and simplify	M1	
	$x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm)	M1	
	x = 2 (ignore $x = -2$)	A1	(3)
			5
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0		
	A1 for a fully correct expression. Must be $3 \cot 3x^0$. If there is $a + c$ they score	re A0.	
(b)	1 st M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. of	collect terms.	
	e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow$	6x = 15	
	(i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equ	uation)	
	2^{nd} M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and		
	attempting to solve $a + bx^2 = 15$		
	For correct processing leading to $x = \dots$		

e.g.

e.g.
$$3+3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$$
 scores M1M0A0

 $3+3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0

Can condone arithmetic slips but processes should be correct so

$$3+3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$$
 scores M1M0A0

5

Question number	Scheme	Marks	
5. (a)	$[x_2 =]a-3$	B1	(1)
	$[x_3 =] ax_2 - 3 \text{ or } a(a-3) - 3$	M1	
	$= a(a-3)-3$ $= a^2-3a-3 (*)$ both lines needed for A1		
	$= a^2 - 3a - 3 (*)$	A1cso	(2)
(c)	$a^2 - 3a - 3 = 7$		
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1	
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$ (a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b) (c)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂-3 A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. 1st M1 for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a 3TQ=0 		
	2^{nd} dM1 This mark is dependent upon the first M1. for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0"car $(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{9}{4} - 10 = 0$ or correct use of quadratic They must have a form that leads directly to 2 values for a . Trial and Improvement that leads to only one answer gets M0 here. A1 for both correct answers. Allow $x =$	c formula with	

•

Question Number	Scheme	Marks
6. (a)	2x+5= $\frac{3}{x}$ 2x ² +5x-3[=0] or 2x ² +5x=3 (2x-1)(x+3)[=0] x=-3 or $\frac{1}{2}$ $y = \frac{3}{-3}$ or 2×(-3)+5 or $y = \frac{3}{\frac{1}{2}}$ or 2×($\frac{1}{2}$)+5 Points are $(-3,-1)$ and ($\frac{1}{2}$,6) (correct pairings)	M1 A1 M1 A1 M1 A1ft
(a)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly	the correct shape
(b)	Answer only of $x = -3$ and $x = \frac{1}{2}$ scores 4/4, then apply the negative x -axis. Ignored and no touching or intersections with axes. Condone up to 2 inward bends but there must be some ends that are roughly asymmetric and the negative x -axis. Ignored for x for x and x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis and the negative x -axis. Ignored for x -axis. Ignored	e any values. values in tables. ect.) should be
	3^{rd} M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ 3^{rd} A1ft follow through both their x values, in either equation but the same for each pairings required but can be $x = -3$, $y = -1$ etc	

Question number		Scheme	Mai	rks
7. (a)	5, 7, 9,	11 or $5+2+2+2=11$ or $5+6=11$ use $a=5$, $d=2$, $n=4$ and $t_4=5+3\times 2=11$	B1	(1)
(b)	$t_n = a +$	+(n-1)d with one of $a=5$ or $d=2$ correct (can have a letter for the other)	M1	
	= 5	+2(n-1) or $2n+3$ or $1+2(n+1)$	A1	(2)
(c)	$S_n = \frac{n}{2}$	$[2\times 5 + 2(n-1)]$ or use of $\frac{n}{2}(5 + \text{"their } 2n + 3\text{"})$ (may also be scored in (b))	M1A1	
	= {	$n(5+n-1)$ } = $n(n+4)$ (*)	A1cso	(3)
(d)	43 = 2	2n+3	M1	
	[n] = 2	20	A1	(2)
(e)	$S_{20} = 2$	$20 \times 24 = \underline{480} (km)$	M1A1	(2)
				10
(a)	B1	Any other sum must have a convincing argument	l.	
(b)	M1 A1	for an attempt to use $a + (n - 1)d$ with one of a or d correct (the other can be Allow any answer of the form $2n + p$ ($p \ne 5$) to score M1. for a correct expression (needn't be simplified) [Beware $5 + (2n - 1)$ score Expression must be in n not x . Correct answers with no working scores $2/2$.	ŕ	
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1^{st} A1 for a fully correct expression 2^{nd} A1 for correctly simplifying to given answer. No incorrect working seen. Must see S_n used.			used.
(d)	M1 A1	Do not give credit for part (b) if the equivalent work is given in part (d) for forming a suitable equation in n (ft their (b)) and attempting to solve leafor 20 Correct answer only scores $2/2$. Allow 20 following a restart but check wo eg $43 = 2n + 5$ that leads to $40 = 2n$ and $n = 20$ should score M1A0.	_	=
(e)	M1 A1	for using their answer for n in $n(n+4)$ or S_n formula, their n must be a val for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 cm.		n]
	NB "at	tempting to solve" eg part (d) means we will allow sign slips and slips in ar	ithmetic	
	bu	nt not in processes. So dividing when they should subtract etc would lead to	M0.	
	Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each part.			
	Poor la	belling may occur (especially in (b) and (c)). If you see work to get $n(n +$	4) mark a	as (c)

Question number	Scheme	Marks
8. (a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$	M1
	So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	A1cso (2)
(b)	$q(q+8) = 0$ or $(q \pm 4)^2 \pm 16 = 0$	M1
	(q) = 0 or -8 (2 cvs) $-8 < q < 0 \text{ or } q \in (-8, 0) \text{ or } q < 0 \text{ and } q > -8$	A1 A1ft (3)
	$-6 < q < 0$ of $q \in (-8, 0)$ of $q < 0$ and $q > -8$	A1ft (3) 5
(a)	M1 for attempting $b^2 - 4ac$ with one of b or a correct. < 0 not needed for M1 This may be inside a square root.	
	A1cso for simplifying to printed result with no incorrect working or statements se	en.
	Need an intermediate step	
	e.g. $q^2 - 8q < 0$ or $q^2 - 4 \times 2q \times -1 < 0$ or $q^2 - 4(2q)(-1) < 0$ or $q^2 - 8q(-1) < 0$	or $q^2 - 8q \times -1 < 0$
	i.e. must have \times or brackets on the $4ac$ term	
	< 0 must be seen at least one line before the final answer.	
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. would lead to 2 values for q. The "= 0" may be implied by values appearing	
	would lead to 2 values for q . The -6 may be implied by values appearing 1^{st} A1 for $q = 0$ and $q = -8$	ig later.
	2^{nd} A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" reg	ion
	q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0	
	BUT " $q < 0$ and $q > -8$ " is A1	
	Do not accept a number line for final mark	

Question number	Scheme	Marks	
9. (a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] 3kx^2 - 2x + 1$	M1A1	(2)
(b)	Gradient of line is $\frac{7}{2}$	B1	
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1	
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$	A1	(4)
(c)	$x = -\frac{1}{2} \Rightarrow y = k \times \left(-\frac{1}{8}\right) - \left(\frac{1}{4}\right) - \frac{1}{2} - 5, = -6$	M1, A1	(2)
		8	
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)		
	A1 all correct. A "+ c " scores A0		
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark up they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$	ntil you are s	sure
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen		
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k =$		
	Equation must use their $\frac{dy}{dx}$ and their gradient of line. Assuming the gradient	ent is 0 or 7 s	cores
	M0 unless they have clearly stated that this is the gradient of the line.		
	A1 for $k=2$		
(c)	M1 for attempting to substitute their k (however it was found or can still be a let $x = -\frac{1}{2}$ into y (some correct substitution)	tter) and	
	A1 for - 6		

S

Question number	Scheme	Marks		
10. (a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$	M1		
	$= \sqrt{36+9} \text{ or } \sqrt{45} \tag{condone} \pm)$			
	$=3\sqrt{5}$ or $a=3$ ($\pm 3\sqrt{5}$ etc is A0)	A1 (3)		
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$	M1, A1		
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2	M1		
	Equation for l_2 is: $y-3=2(x-1)$ or $\frac{y-3}{x-1}=2$ [or $y=2x+1$]	M1 A1ft (5)		
(c)	P is $(0, 1)$ (allow " $x = 0, y = 1$ " but it must be clearly identifiable as P)	B1 (1)		
(d)	$PQ = \sqrt{(1 - x_P)^2 + (3 - y_P)^2}$ Determinant Method e.g(0+0+7) - (1+21+0)	M1		
	DO 12 22 E	A1		
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$ Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5 $\begin{vmatrix} = -15 \text{ (o.e.)} \\ Area = \frac{1}{2} -15 , = 7.5 \end{vmatrix}$	dM1, A1 (4)		
	2	13		
(a)	Rules for quoting formula: For an M mark, if a correct formula is quoted and <u>some</u> correct then M1 can be awarded, if no values are correct then M0. If no correct formula is seen the scored for a fully correct expression. M1 for attempting QR or QR^2 . May be implied by $6^2 + 3^2$ 1st A1 for as printed or better. Must have square root. Condone \pm			
(b)	1^{st} M1 for attempting gradient of QR 1^{st} A1 for - 0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_2 = 2$ 2^{nd} M1 for an attempt to use the perpendicular rule on their gradient of QR .	y = 2x + 1 with no working.		
	3^{rd} M1 for attempting equation of a line using Q with their changed gradient. 2^{nd} A1ft requires all 3 Ms but can ft their gradient of QR .	Send to review.		
(d)	 1st M1 for attempting PQ or PQ² follow through their coordinates of P 1st A1 for PQ as one of the given forms. 2nd dM1 for correct attempt at area of the triangle. Follow through their value of a and their PQ. This M mark is dependent upon the first M mark 2nd A1 for 7.5 or some exact equivalent. Depends on both Ms. Some working must be seen. 			
ALT	Use QS where S is (1, 0) 1^{st} M1 for attempting area of $OPQS$ and QSR and OPR . Need all 3. 1^{st} A1 for $OPQS = \frac{1}{2}(1+3) \times 1 = 2$, $QSR = 9$, $OPR = \frac{7}{2}$ M1 for attempting area of $OPQS$ and OPR . Need all 3.	Determinant Method M1 for attempt -at least one value in each bracket correct. A1 if correct (± 15) M1 for correct area formula A1 for 7.5		
MR	Misreading x -axis for y -axis for P . Do NOT use MR rule as this oversimplifies the question. They can only get M marks in (d) if they use PQ and QR .			

s 11

Question number	Scheme	Marks	
11. (a)	$\left(x^2 + 3\right)^2 = x^4 + 3x^2 + 3x^2 + 3^2$	M1	
I I	$\frac{\left(x^2+3\right)^2}{x^2} = \frac{x^4+6x^2+9}{x^2} = x^2+6+9x^{-2} \qquad (*)$	Alcso	(2)
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1	
	$20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$	M1	
	c = -4	A1	
	$c = -4$ $[y =] \frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft	(6)
			8
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct	ct terms.	
	A1 at least this should be seen and no incorrect working seen.		
	If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.		
(b)	1 st M1 for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second.		
	1^{st} A1 for two correct x terms, un-simplified, as printed or better 2^{nd} A1 for a fully correct expression. Terms need not be simplified and $+c$ is not represented by No $+c$ loses the next 3 marks	required.	
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a line	ear equation fo	or c
	$3^{\text{rd}} \text{ A1 for } c = -4$		
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.		
	Condone missing " $y =$ " Follow through their numerical value of c only.		

S